ω scans
Absorption correction:
empirical (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.680, T_{\text {max }}=0.858$
21436 measured reflections
4893 independent reflections
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.32^{\circ}$
$h=-18 \rightarrow 18$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 20$
Intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.067$
$S=1.138$
4893 reflections
322 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}\right. \\
& +1.8145 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.794 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.699 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Miskowski, V. M., Houlding, V. H., Che, C.-M. \& Wang, Y. (1993). Inorg. Chem. 32, 2518-2524.
Onan, K., Rebek, J. Jr, Costello, T. \& Marshall, L. (1983). J. Am. Chem. Soc. 105, 6759-6760.
Rebek, J. Jr (1984). Acc. Chem. Res. 17, 258-264.
Rebek, J. Jr, Costello, T., Marshall, L. R., Wattey, R., Gadwood, R. C. \& Onan, K. (1985). J. Am. Chem. Soc. 107, 7481-7487.
Rebek, J. Jr \& Marshall, L. R. (1983). J. Am. Chem. Soc. 105, 66686670.

Rebek, J. Jr, Trend, J. E., Wattley, R. V. \& Chakravorti, S. (1979). J. Am. Chem. Soc. 101, 4333-4337.
Sheldrick, G. M. (1990). Actu Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Dala. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystul Structures. University of Göttingen. Germany.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Sofiware. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pd} 1-\mathrm{N} 21$	$2.031(2)$	$\mathrm{Pd} 1-\mathrm{Cl} 2$	$2.3107(6)$
$\mathrm{Pd} 1-\mathrm{N} 31$	$2.0416(19)$	$\mathrm{Pd} 1-\mathrm{Cll}$	$2.3110(6)$
$\mathrm{N} 21-\mathrm{Pd} 1-\mathrm{N} 31$	$79.90(8)$	$\mathrm{N} 21-\mathrm{Pd} 1-\mathrm{Cll}$	$95.77(5)$
$\mathrm{N} 21-\mathrm{Pd} 1-\mathrm{Cl} 2$	$170.98(5)$	$\mathrm{N} 31-\mathrm{Pd} 1-\mathrm{Cll}$	$169.39(6)$
$\mathrm{N} 31-\mathrm{Pd} 1-\mathrm{Cl} 2$	$94.74(6)$	$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{Cll}$	$90.70(2)$

The data collection nominally covered over a sphere of reciprocal space, by a combination of four sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 5.95 cm . Coverage of the unique set is over 99% complete to at least 26° in θ. Crystal decay was monitored by repeating the initial frames at the end of data collection and analysing the duplicate reflections. All non- H atoms, except for $\mathrm{C} 9^{\prime}$, were refined anisotropically. Due to disorder, the bond lengths $\mathrm{O} 8-\mathrm{C} 9, \mathrm{O} 8-\mathrm{C} 9^{\prime}, \mathrm{O} 11-\mathrm{C} 10, \mathrm{Ol1-C12} ,\mathrm{O} 11^{\prime}-\mathrm{C} 10$ and $\mathrm{O} 11^{\prime}-\mathrm{C} 12^{\prime}$ were restrained to 1.430 (3) A , and $\mathrm{C} 9-\mathrm{C} 10$, $\mathrm{C} 9^{\prime}-\mathrm{C} 10, \mathrm{C} 12-\mathrm{C} 13$ and $\mathrm{C} 12^{\prime}-\mathrm{C} 13$ to 1.510 (3) $\AA . \mathrm{H}$ atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [$\left.U(\mathrm{H})=1.2 U_{\mathrm{cq}}(\mathrm{C})\right]$ using a riding model with $\mathrm{C}-\mathrm{H}$ (secondary) $=0.99$ or C $\mathrm{H}($ aromatic $)=0.95 \AA$.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1272). Services for accessing these data are described at the back of the journal.

References

Goddard, R., Hemalatha, B. \& Rajasekharan, M. V. (1990). Acta Cryst. C46, 33-35.
Klein, R. A., van Belzen, R., Vrieze, K., Elsevier, C. J., Thummel, R. P., Fraanje, J. \& Goubitz, K. (1997). Collect. Czech. Chem. Commun. 62, 238-256.
Luis, S. V., Burguete, M. I. \& Salvador, R. V. (1991). J. Incl. Phenom. 10, 341-353.

Acta Cryst. (1998). C54, 1095-1097

[(1,2,5,6- $\boldsymbol{\eta})$-Cyclooctatetraene] $\left(\eta^{5}\right.$-cyclopentadienyl)cobalt

Hubert Wadepohl, Rüdiger Merkel and Hans Pritzkow

Anorganisch-chemisches Institut, der Ruprecht-KarlsUniversität, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.E-mail: bu9@ix.urz.uni-heidelberg.de
(Received 20 November 1997; accepted 2 February 1998)

Abstract

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$, the cycooctatetraene ligand coordinates to the Co atom through two non-adjacent $\mathrm{C}=\mathrm{C}$ double bonds. A tub-like shape is adopted by the polyolefin ligand.

Comment

For a η^{4}-bonded $\mathrm{C}_{8} \mathrm{H}_{8}$ ligand, two coordination geometries are possible (Deganello, 1979). In the cycloocta-diene-like $1,2,5,6-\eta$ coordination mode, the polyolefin is bonded to the metal through two non-adjacent $\mathrm{C}=\mathrm{C}$ double bonds (' 1,5 -isomer'). The second coordination isomer has a 1-4- η-coordinated butadiene-like substructure, where bonding to the metal occurs through two adjacent double bonds ('1,3-isomer'). Several complexes are known in which both isomers have been observed in solution (Deganello, 1979).

The structural preferences and electronic structure of $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$, (I), and its radical anion have been studied extensively (Albright et al., 1981; Geiger et al., 1986, 1993; Geiger, 1995). Both isomers are present in solutions of neutral (I). At ambient temperature, the concentration of the $(1,2,5,6-\eta)-\mathrm{C}_{8} \mathrm{H}_{8}$ complex, ($1,5-\mathrm{I}$), is about three to four times that of the $(1-4-\eta)$ $\mathrm{C}_{8} \mathrm{H}_{8}$ isomer, (1,3-I) (Moraczewski \& Geiger, 1979; Geiger, 1995). This equilibrium changes dramatically upon reduction of the solution. Both isomers were found to be reducible by one electron to give the radical anions ($[1,5-\mathrm{I}]^{-}$) and ($[1,3-\mathrm{I}]^{-}$). However, in marked contrast to the neutral complex, the $1,2,5,6-\eta$ coordination of the cyclooctatetraene is greatly destabilized in the anion, which rapidly and irreversibly transforms into the 1,3isomer (Moraczewski \& Geiger, 1981).

(I)

Surprisingly, no crystal structure of a neutral mononuclear complex of cyclooctatetraene with a metal of the cobalt group has been reported to date. Hence, details of the coordination geometry in either of the two above-mentioned coordination modes of cyclooctatetraene were not available.

Crystals of (I), obtained by vacuum sublimation of the solid at 373 K , were found to be composed of the $(1,2,5,6-\eta)-\mathrm{C}_{8} \mathrm{H}_{8}$ isomer, (1,5-I). The crystal structure is quite similar to that of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{4}-1,5\right.\right.$ cyclooctadiene)] (Ondráček et al., 1990), which also has a similar molecular shape. A tub-like geometry is attained by the cyclooctatetraene ligand in (1,5-I) (Fig. 1). Compared with the free ligand, the C_{8}-tub is less 'open': fold angles (dihedral angles) along the transannular vectors $\mathrm{C} 1 \cdots \mathrm{C} 6$ and $\mathrm{C} 2 \cdots \mathrm{C} 5$ are

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
125.9 (2) and $126.1(2)^{\circ}$, respectively, in the complex and 138.4° in the free ligand (Claus \& Krüger, 1988). Consequently, the transannular distance between the centres of opposite double bonds is shorter in (1,5-I) [2.714 (11) and 2.974 (12) \AA for the metal-coordinated and free $\mathrm{C}=\mathrm{C}$ double bonds, respectively] than in the free ligand $(3.085 \AA)$. The lengths of the two non-coordinated $\mathrm{C}=\mathrm{C}$ double bonds within the C_{8} ring [1.314 (6) and $1.342(5) \AA$] compare well with the corresponding distance in the free ligand [1.333(2) \AA; Claus \& Krüger, 1988]. Interaction with the metal atom causes the two remaining double bonds to be lengthened by about $0.1 \AA$. The coordination planes of the cyclooctatetraene and cyclopentadienyl ligands are nearly parallel to each other [angle between normals to the best planes $1.3(2)^{\circ}$]. The Co atom is at distances of 1.317 (1) and 1.718 (1) \AA, respectively, from these two planes.

Experimental

Complex (I) was prepared as described in the literature (Fritz \& Keller, 1961). Deep-red single crystals were obtained by slow vacuum sublimation $[0.03 \mathrm{mbar}(1 \mathrm{mbar}=100 \mathrm{~Pa})$, 373 KJ .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]$
$M_{r}=228.16$
Monoclinic
$P 2_{1} / c$
$a=12.302(8) \AA$
$b=7.461(4) \AA$
$c=11.203(8) \AA$
$\beta=101.70(5)^{\circ}$
$V=1006.9(11) \AA^{3}$
$Z=4$
$D_{x}=1.505 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens Stoe AED-2
\quad diffractometer
ω scans
Absorption correction:
$\quad \psi$ scan (Stoe \& Cie,
$1989 b$)
$T_{\text {min }}=0.675, T_{\max }=0.780$
2423 measured reflections

2423 measured reflections 2423 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.104$
$S=1.024$
2423 reflections
180 parameters
H atoms refined

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 23 reflections
$\theta=14.7-17.1^{\circ}$
$\mu=1.656 \mathrm{~mm}^{-1}$
$T=203(2) \mathrm{K}$
Plate
$0.30 \times 0.30 \times 0.15 \mathrm{~mm}$
Red

1846 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=28.04^{\circ}$
$h=0 \rightarrow 16$
$k=-9 \rightarrow 0$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 120 min intensity decay: 2%

$$
\Delta \rho_{\text {max }}=0.701 \mathrm{e}^{\AA_{\circ}^{-3}}
$$

$$
\Delta \rho_{\text {min }}=-0.557 \mathrm{e}^{-3}
$$

Extinction correction:
SHELXL97 (Sheldrick, 1997)

Extinction coefficient: 0.0139 (14)

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0506 P)^{2}\right. \\
& +0.3933 P 1 \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001
\end{aligned}
$$

Scattering factors from International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Col}-\mathrm{C} 2$	$2.014(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.495(5)$
$\mathrm{Col}-\mathrm{Cl}$	$2.015(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.314(6)$
$\mathrm{Col}-\mathrm{C} 5$	$2.024(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.485(6)$
$\mathrm{Col}-\mathrm{C} 6$	$2.209(3)$	$\mathrm{C}--\mathrm{C} 6$	$1.426(5)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.418(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.492(6)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.494(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.342(5)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 8$	$121.2(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.7(3)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$122.0(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.6(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.8(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$117.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.2(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl}$	$117.1(3)$

Data collection: DIF4 (Stoe \& Cie, 1989a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1989c). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. A Heisenberg fellowship to HW is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1269). Services for accessing these data are described at the back of the journal.

References

Albright, T. A., Geiger, W. E., Moraczewski, J. \& Tulyathan, B. (1981). J. Am. Chem. Soc. 103, 4787-4794.

Claus, K. H. \& Krüger, C. (1988). Acra Cryst. C44, 1632-1634.
Deganello, G. (1979). Transition Metal Complexes of Cyclic Polyolefins, ch. II. London: Academic Press.
Fritz, H. P. \& Keller, H. (1961). Z. Naturforsch. Teil B, 16, 348.
Geiger, W. E. (1995). Acc. Chem. Res. 28, 351-357.
Geiger, W. E., Gennett, T., Grzeszczuk, M., Lane, G. A., Moraczewski, J., Salzer, A. \& Smith, D. E. (1986). J. Am. Chem. Soc. 108, 7454-7461.
Geiger, W. E., Rieger, P. H., Corbato, C., Edwin, J., Fonseca, E., Lane, G. A. \& Mevs, J. (1993). J. Am. Chem. Soc. 115, 2314-2323.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Moraczewski, J. \& Geiger, W. E. (1979). J. Am. Chem. Soc. 101, 3407-3408.
Moraczewski, J. \& Geiger, W. E. (1981). J. Am. Chem. Soc. 103, 4779-4787.
Ondráček, J., Schehlmann, V., Maixner, J. \& Kratochvíl, B. (1990). Collect. Czech. Chem. Commun. 55, 2447-2452.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1989a). DIF4. Diffractometer Control Program. Version 7.06x/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1989b). EMPIR. Absorption Correction Program. Version 1.03. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1989c). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1998). C54, 1097-1099

6,6-Bis[3-(dimethylamino)-1,1-dimethyl-propyl]-2,2,4,4-tetramethyl-1,3,5-trioxa-2,4-disila-6-stannacyclohexane

Nicole Pieper, Markus Schürmann and Klaus Jurkschat
Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
E-mail: kjur@platon.chemie.uni-dortmund.de
(Received 19 December 1997; accepted 23 February 1998)

Abstract

The title compound, bis(3-dimethylamino-1,1-dimethyl-propyl- $\left.C^{1}, N\right)$ (disiloxanediolato- O, O^{\prime}) tin(IV), $\left[\mathrm{Sn}\left(\mathrm{C}_{4} \mathrm{H}_{12}{ }^{-}\right.\right.$ $\left.\mathrm{O}_{3} \mathrm{Si}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}\right)_{2}$], is the first stannasiloxane with hexacoordinate tin. The intramolecular $\mathrm{Sn}-\mathrm{N}$ distances are 2.879 (3) and 2.957 (3) \AA.

Comment

In an attempt to synthesize $\left[\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]_{2} \mathrm{SnO}$ as a functionally substituted analogue of $\left({ }^{\prime} \mathrm{Bu}_{2} \mathrm{SnO}\right)_{3}$ (Puff et al., 1984) by reaction of $\left[\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]_{2}$ SnCl_{2} (Jurkschat et al., 1989) with sodium hydroxide, we obtained the title compound, $\left[\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]_{2}-$ $\mathrm{Sn}\left(\mathrm{OSiMe}_{2}\right)_{2} \mathrm{O}$, (1). The synthesis of (1) can be rationalized by reaction of sodium hydroxide and silicon grease, accidentally present in the reaction mixture, with [$\left.\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]_{2} \mathrm{SnCl}_{2}$. The formation of stannasiloxanes from reactions in the presence of silicon grease has been noticed by other groups (Churchill et al., 1993; Eaborn et al., 1995; Cervantes-Lee et al., 1998).

(1)

The molecular structure of (1) is shown in Fig. 1. The Sn atom is coordinated by two C , two O and two N atoms, resulting in a distorted octahedral configuration. The C atoms are in mutually trans positions, whereas the O and N atoms are cis. This configuration at tin is the same as in the structure determined for $\left[\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}\right]_{2} \mathrm{Sn}(\mathrm{OPh})_{2}$ (Pieper et al., 1998), but it is different from the all-trans configuration observed for the Sn atoms in the related derivatives $\left[\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CMe}_{2}\right]_{2} \mathrm{SnCl}_{2}$ (Schollmeyer et al.,

